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Abstract—Recent advances in microscopy and data analysis
have allowed for the resolution of photoactivatable fluorescent
protein (PA-FP) samples past the theoretical diffraction limit
of 200 nm. To do this, several techniques have been developed
which perform well on low density protein samples, but which
have more difficulty resolving high density PA-FP images. This
project seeks to super-resolve PA-FP samples using Convolutional
Neural Networks (CNNs) by combining super-resolution and
localization techniques. This implementation achieves good results
on existing contest datasets and acts as a generalizable model to
other protein samples. Notably, the neural network significantly
outperforms other easily-accessible algorithms. Results from these
experiments suggest that convolutional neural networks are a very
promising method for single-molecule localization in a wide array
of situations, with evaluation times much faster than existing
methods.
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I. INTRODUCTION

In conventional optics, the resolution achievable by an
optical instrument is limited by the effects of light diffraction
at small scales. In microscopy, this limit occurs around 200
nm, where objects or features smaller than this scale are not
resolvable by the instrument alone. However, Betzig et al.
[1] introduced a new technique for super-resolving images of
photoactivatable fluorescent proteins (PA-FPs). These proteins
are on the order of 10 nm and can be made to fluoresce at
random intervals through exposure to laser light. The density
of proteins flashing at one time can be varied by changing the
frequency of laser pulses. By recording a signal from active
PA-FPs, techniques such as PALM [1] and STORM [2] fit these
signals with a single point-spread function (PSF). Through this
process, PALM and STORM achieve good results in locating
the position of a given PA-FP up to 20 nm, a factor of ten past
the diffraction limit.

Despite this success of PALM and STORM, these methods
have difficulty resolving PA-FP high-density fluorescence sig-
nals where diffraction patters occur simultaneously in close
proximity. Instead, these techniques are limited to “sparse
fields” where the majority of the sample is inactive at a given
time [1]. However, when limited to sparse fields, sampling
times must be long (on the order of 10 seconds) in order to
capture an occurrence of each individual protein fluorescence,
and such a limitation poses challenges to imaging living
samples. Currently, there is an active area of research on
developing techniques which can handle these high-density

situations in the hope of decreasing the imaging time required
for individual PA-FP samples. With this in mind, this research
project seeks to use CNNs to resolve microscopic images
through a machine learning approach, which has not yet been
thoroughly explored.

II. RELATED WORK

There are many algorithms which seek to accomplish the
task of high-density localization microscopy. While none of the
current leading algorithms use machine learning techniques,
there are quite a few which improve on the original PALM and
STORM methods. Some notable techniques are listed below.

Holden et al. [4] introduce DAOSTORM, an improvement
on single PSF methods which is capable of fitting multiple
PSFs to locations of high-density PA-FP signals. By doing
this, DAOSTORM processes high-density signals with better
precision than STORM and PALM methods. DAOSTORM
achieves some of the best results to date on localization tasks
involving high-density data.

Zhu et al. [5] build Compressed Sensing STORM
(CSSTORM), which achieves higher density results than
DAOSTORM and improves sampling time to 3 seconds.
CSSTORM models PSFs as linear transformations on protein
position data, and divides the output space into grid locations
as small as one-eighth pixel size.

In the same year, Mukamel et al. [6] create deconvolutional
STORM (deconSTORM). This technique also treats PSFs as
reversible transformations on an original image, referred to
as convolutions (distinct from convolutional neural networks).
However, Mukamel et al. introduce non-linearity to this trans-
formation to achieve good high-density results. By performing
deconvolutions, deconSTORM is able to reconstruct super-
resolution images.

In 2014, Ovensky et al. introduce ThunderSTORM [7], an
ImageJ plugin which acts as a culmination of several different
methods used to super-resolve proteins. ThunderSTORM has
high performance in a variety of localization tasks, and is
extremely accessible. Along with performing analysis, Thun-
derSTORM includes a realistic simulator of PA-FP data as well
as an evaluator to analyze the performance of other methods.

Most recently, Min et al. [8] design the FAst Localization
algorithm based on a CONtinuous-space formulation (FAL-
CON). As opposed to previous methods, FALCON achieves
continuous output space by fitting PA-FP signals using Taylor



Fig. 1: Efficient implementation of the subpixel convolution layer (image taken without permission from Shi et al. [3]). This
diagram shows two initial convolution layers followed by the subpixel convolution layer, which outputs a single-channel image
by rearranging the channels in the subpixel layer to increase resolution.

approximations of PSFs. Thus, as compared to other meth-
ods, FALCON is able to achieve higher-precision localization
without significantly increasing computation complexity. Com-
pared to CSSTORM, FALCON also reduces sample time to 2.5
second temporal resolution. Along with DAOSTORM, FAL-
CON performs very well in high-density localization tasks.

III. METHODS

A. Super-Resolution

Recently, CNNs have achieved state-of-the-art results for
super-resolution tasks [3], [9], [10]. In particular, Shi et al.
[3] introduce an efficient method for learning super-resolution
by upscaling in the network directly, rather than relying on
other external upscaling methods. This particular architecture
is based on the idea of subpixel convolutions, where a normal
convolutional layer is used with fractional stride size in order
to upscale the resulting output. However, as noted by Shi et
al., subpixel convolution exponentially increases training time.
Thus, they introduce a novel, efficient method for computing
an output equivalent to that of subpixel convolutions. This is
achieved by convolving a normal filter with r∗r∗c channels and
a stride of 1×1, where r is the upscaling factor. The resulting
image has size w×h× r ∗ r ∗ c, and is then rearranged into an
image of size w ∗ r × h ∗ r × c. This operation is represented
by Figure 1.

Our network architecture implements this technique in or-
der to map low-resolution microscope data to a high-resolution
label space. By using this convolutional layer, we can train
an end-to-end super-resolution network for localization with
arbitrarily-large output resolution, thus increasing our local-
ization accuracy.

B. Distance Transform Regression

The task of localization is closely related to the well-
studied problem of counting. The current best methods for
counting are based on the work of Lempitsky and Zisserman.
[11], where regression models are trained to map objects
to density maps. These density maps represent objects as
Gaussian distributions, and are designed in such a way such
that the discrete integral of the map is equal to the count of
objects in the given image. While this technique has achieved

state-of-the-art results for the task of counting on various
datasets [12], it does not provide a good method for accurately
localizing objects in these images.

However, density-map regression can be slightly altered
in order to better-localize proteins. Rather than learning re-
gression model from objects to Gaussians, we attempt to
map a pixel to its distance from the nearest protein location,
as proposed by Kainz et al. [13]. Each pixel in a label
sample is assigned a value d based on its Euclidean distance
to the nearest localization. Then, the following operation is
performed on the label data:

f(d) =

{
eα(1−

d
dmax

) − 1 0 ≤ d < dmax
0 d ≥ dmax

(1)

Through this operation, called the distance transform, each
protein is assigned an exact peak with the value eα. After
training our model to regress protein images to this function,
we can find local maxima of the network output, thresholded
at some lower-bound. These maxima correspond to protein
locations and are accurate up to the resolution of the output
image. Furthermore, these locations can be refined slightly by
fitting a quadratic to a small neighborhood about any local
maxima, thus producing a continuous output space.

IV. EXPERIMENTS

A. Datasets

Test data for this experiment comes from the Single-
Molecule Localization Microscopy (SMLM) Symposium chal-
lenges from 2013 and 2016. These challenge datasets provide
simulated PA-FP microscope samples at varying densities as
well as ground-truth locations for these simulated proteins.
These simulations are designed to model proteins in various
tubulin structures.

The SMLM challenges provide leaderboards showing re-
sults from a number of existing techniques (including those
mentioned above) on contest datasets. While the ground truth
localizations for these datasets are not provided, our results
may be sent in for evaluation, allowing us to make general
comparisons between our method and various state-of-the-art
algorithms.



Fig. 2: Results from the 2013 SMLM dataset using the distance transform. The top row shows the 2013 dataset averaged over
all frames (left), the ground-truth protein positions (middle), and a histogram of our network protein location predictions (right),
where a brighter value signifies more-frequent occurrences of protein locations. The bottom row contains a sample testing image
(left), its label data using the distance transform (middle), and our network prediction (right)

1) 2013: The 2013 challenge is focused on high-density
localization. From this challenge, we use the “Bundled Tubes
High Density” dataset, which models 8 tubulins with a diame-
ter of 30 nm, in a 100 nm thick microscope slide. This dataset
has 81049 fluorophores contained in 168 frames, making it the
highest density dataset used in our experiments.

2) 2016: The primary focus of the 2016 challenge is on
3D localization. However, the challenge contains multiple 2D
training datasets. In order to distinguish these datasets from
those in the 2013 challenge, these 2D localization datasets
simulate a thicker microscope slide of 1500 nm, meaning that
approximately half of the proteins appear out of focus. From
the 2016 challenge, we use the MT0.N1.HD and MT0.N2.HD
datasets, both of which represent high-density samples. Pro-
teins in these datasets occur at a slightly lower density than the
2013 samples, modeling three microtubules over 2500 frames
and a total of 11172 flashes. These datasets simulate identical
protein flashes and locations within each frame, differing only
in signal-to-noise (SNR) ratios. The MT0.N1.HD dataset has a
high peak SNR average of 22.597, while the MT0.N2.HD has
a lower peak SNR average of 19.425. We will refer to these

datasets as high-SNR and low-SNR 2016 datasets respectively.

3) Evaluation: Training data is generated using Thun-
derSTORM’s simulator, which creates artificial microscopic
images together with ground-truth locations. This simulator
incorporates a number of parameters which specify the back-
ground noise, density of proteins, and camera detector settings.
In order to evaluate the neural network performance, we use
ThunderSTORM’s built-in evaluation program. This program
computes statistics such as the precision, recall, Jaccard Index,
F1-Measure, and root-mean-squared (RMS) error of a result
compared to ground-truth data. In this evaluation, one spec-
ifies the maximum distance allowed for a localization to be
considered correct, which we refer to as the tolerance. Our
neural network predictions are generated using the methods
described in the following subsection.

B. 2013 Experiments

For the 2013 dataset, we use an architecture of 9 convolu-
tional layers with 3 × 3 filter-size and 32 feature-detectors, 1
subpixel layer with an upscaling factor r = 7 and 32 feature



Fig. 3: Jaccard Index (top) and RMSE (bottom) for our 2013
neural network predictions at a range of tolerances. These plots
show our neural network results with and without dropout
layers, as well as the results from ThunderSTORM’s analysis

detectors, and a 1× 1 filter size flattening convolutional layer
which outputs gray scale image. We train this network on 1000
64× 64 images with a pixel-size of 100× 100 nm generated
with ThunderSTORM. These images are designed to have
density and background noise similar to that found in the 2013
SMLM HD dataset, but with completely random distribution
rather than tubulin structure. For the distance transformation,
we set α = 7 and d = 35 pixels. We experiment with this
configuration using a network with no dropout as well as one
with a dropout rate of .5%. Visual results of the resulting
regression map are shown in Figure 2.

When evaluating these results, we choose a threshold of
300 for local-maxima. After evaluating the Jaccard Index and
RMS error of our results at various tolerances between 10
and 250 nm, we also analyze the 2013 dataset using Thunder-
STORM’s built-in protein localization software. A comparison
between these methods is shown in Figure 3, which includes
both dropout and non-dropout network architectures.

Fig. 4: Jaccard Index (top) and RMSE (bottom) on the 2016
high-SNR SMLM dataset. Here, we show results when training
the CNN on data simulated from ThunderSTORM and on
SMLM contest data. We also show ThunderSTORM results.

C. 2016 Experiments

Due to the thicker nature of the 2016 SMLM datasets,
not all protein flashes are in focus in the SMLM training
datasets. Because of this, our training method for the 2016
data differ slightly from those in the 2013 experiments. For
both low- and high-SNR datasets, we train on 4000 simulated
ThunderSTORM images. These simulated images are made
using gradient density masks, which increase protein density
from top to bottom of the image, as well as gradient noise
masks, which increase the noise signal in the simulations from
the left to the right. During preprocessing, we flip and rotate
these images in cycles of 8 to achieve all possible orientations
of these density and noise masks. In both datasets, we use an
a model with 11 convolutional layers (32 feature detectors), 1
subpixel layer with a factor r = 7 and 10 feature detectors,
and a final 1× 1 convolutional layer. In both of these models,
we use a value of α = 7 and d = 42.

We compare these results to the ThunderSTORM evalua-
tion of these datasets. We also train our model on low-SNR
and high-SNR training sets directly in order to compare against
the performance using simulated training data. Before training



on these datasets directly, we set aside the first 500 frames
of both datasets for validation. The results from all of these
experiments are shown in Figures 4 and 5, all tested on the
500 validation frames.

D. Results

In many of these experiments, we see that our super-
resolving CNN outperforms ThunderSTORM in both Jaccard
Index and RMS error. The exception to this is in the 2016
low-SNR RMS error, where ThunderSTORM obtains a slightly
lower value. Despite this, our implementation improves signif-
icantly on ThunderSTORM’s results in terms of Jaccard Index
(see Tables I and II)

From these experiments, we see that our network learns
a generalizable model for protein localization. After training
on stochastically-placed protein signals and testing on data
with a tubulin structure, our network achieves good results
in localizing high-density proteins. Furthermore, in the 2016
experiments, there is no significant difference between CNN
performance when trained on ThunderSTORM-simulated data
as opposed to contest data directly. Thus, our experiments

Fig. 5: Jaccard Index (top) and RMSE (bottom) on the 2016
low-SNR SMLM dataset. As in Figure 4, we show Thunder-
STORM analysis as well as results when training the network
on ThunderSTORM simulated data and on SMLM data.

ThunderSTORM CNN (dropout) CNN (no dropout)

Jaccard Index .280 .644 .588
RMSE [nm] 44.0 43.7 41.3

TABLE I: 2013 results

ThunderSTORM Simulated Data SMLM Data

Jaccard Index .597/.487 .672/.594 .669/.597
RMSE [nm] 39.5/48.4 35.7/52.4 39.2/52.2

TABLE II: 2016 results (high-SNR/low-SNR)

suggest that this network can be applied to a wide array of
microscope data, by simply changing the parameters of the
ThunderSTORM simulations used for training.

Finally, note that evaluation times are significantly reduced
in the neural network method when compared to methods such
as ThunderSTORM. After training, our network evaluates the
500-frame 2016 validation sets in approximately 90 seconds,
where the majority of this time is spent loading the images
and writing out the results. This time itself could be improved
significantly by using a solid-state drive

V. CONCLUSION

Our network achieves very promising results on high-
density datasets. With further refinement, we expect our results
to be competitive with other top methods aimed at localizing
high-density proteins. Although CNNs have not been thor-
oughly explored in this context, initial results from this project
indicate their applicability to the field of nanometer-scale
microscopy. By implementing techniques such as subpixel
super-resolution and distance transform regression, we have
shown that neural networks are a fast and accurate method
for imaging living samples beyond the diffraction limit of 200
nanometers.

VI. FUTURE WORK

In the upcoming months, we propose further modifications
to our model. Currently, our architecture only uses one scaling
layer in order to upscale the image. We propose to experiment
with multiple scaling layers with smaller scale factors, thus
introducing non-linearities between phases of scaling. One
example architecture consists of three scaling layers with a
scale-factor r = 2, thus resulting in a total upscaling of
8. Furthermore, we have up until now chosen to focus on
2D localization tasks. However, the 2016 SMLM Challenge
primarily focuses on 3D localization, and thus has several 3D
datasets available. In the coming months, we propose to extend
our model to 3D localization tasks. Finally, we plan to submit
our results to the SMLM 2016 Challenge in order to more-
directly compare our method against current state-of-the-art
algorithms.
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Fig. 6: Results from the 2016 low- and high-SNR datasets. The top row shows average histograms from the network predictions,
where the center shows the ground truth, the left shows high-SNR results and the right shows low-SNR results. The bottom row
displays a high-SNR testing image (left), the high-SNR network prediction (left-middle), the ground-truth label (middle), the
low-SNR network prediction (right-middle), and the low-SNR testing image (right)
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